Complexity Explorer Santa Fe Institute

Introduction to Renormalization

Lead instructor: Simon DeDeo

Your progress is not being saved! Enroll now or log in to track your progress or submit homework.
Please return to the Courses page to find current offerings.

7.1 Conclusion: Keeping the things that matter » Quiz Solution

1. What was unusual about the Cellular Automaton renormalization example?
A. we were able to find an exact coarse-graining, where the diagram commuted.
B. the CAs were non-renormalizable.
C. we solved simultaneously for the coarse-graining operation and the model that described the emergent dynamics at that coarse-graining.
D. in the middle of the video, Stephen Wolfram walked across the screen wearing a Gorilla suit.

Answer: (C). In all the other cases, we specified ahead of time the coarse-graining we wanted to do, and then tried to figure out what happened to the model. In the CA case, we put some restrictions on the coarse-graining (eliminating the trivial ones), but otherwise left things free. (B) is interesting: in some cases, Israeli and Goldenfeld could not find a g and P pair that worked on a particular scale. This does imply that some of the rules are non-renormalizable. But many are renormalizable, and for every model, at sufficiently large coarse-graining scales, it turned out they could. Meanwhile, (A) we've seen a couple of times -- in the Markov Chain renormalization, as well as the Krohn-Rhodes theorem example (but not, for example, in the Ising model case).

 

2. What does rate-distortion theory do for you?


A. it tells you how to trade off the cost of missing a fine-grained feature when you coarse-grain your data (on the one hand) with the benefits you get from the lower cost of information gathering required by the coarse-graining function, given a conversion factor between the two costs.
B. it specifies a unique coarse-graining given a particular utility function.
C. it eliminates the need for a coarse-graining operation, by replacing it with a utility function.
D. it measures the extent to which a coarse-graining produces an overly complex model.

Answer (A). The closest answer to the correct one is (B). However, while it's true that rate-distortion theory requires that you specify a utility function ("distortion function"), that's not enough to specify a coarse-graining -- you also have to specify the tradeoff parameter beta, that tells you how expensive it is to gather information relative to how expensive it is to make mistakes.