Introduction to Complexity (Spring, 2014) 6.8 Take Unit 6 Test » Unit 6 Test

Instructions 1

You may use any course materials, websites, Netlogo models, calculators, etc. for this test. Just don't ask another person for the an share your answers with other people.

Question 2

Which one of these was an original inventor of the field of cellular automata?

- A. John Conway
- B. John Holland
- 。 C. John von Neumann
- D. Stephen Wolfram

Question 3

Suppose the following is the initial pattern given to the Game of Life:

What does the lattice look like after one time step?

A

。 B

。 C

. n

Question 4

Consider the following cellular automaton rule:

If the lattice at t = 0 is

What does the lattice look like at t = 1? Assume the lattice of 11 cells wraps around at the edges (i.e., is circular).

A.

。 B.

。C.

。 D.

Question 5

What is the Wolfram number of the rule given in question 3?

- 。 A. 110
- 。 B. 100
- 。 C. 50
- 。 D. 38
- 。 E. 19

Question 6

Consider the following behavior from an elementary cellular automaton:

Which Wolfram class does this rule appear to be in?

- A. Class 1
- B. Class 2
- 。 C. Class 3

Question 7

What is the "lambda" value of elementary CA rule 100?

- o A. 1/8
- o B. 2/8
- 。 C. 3/8
- D. 4/8
- 。 E. 5/8

Question 8

Consider the elementary CA (i.e., 3-cell neighborhoods) that does "local majority voting" --- that is, the center cell updates to the col majority in its neighborhood. For example, a white cell with two black neighbors would update to black, since black is the majority coneighborhood. What is the Wofram number of this CA?

- 。 A. 122
- 。 B. 24
- 。 C. 53
- o D. 232

Question 9

Which of the following is a true statement?

- A. All two-dimensional cellular automata are universal computers.
- B. At least one elementary cellular automaton is a universal computer.
- $\circ~$ C. All elementary cellular automata are universal computers.
- $\circ~$ D. Von Neumann proved that the Game of Life is not a universal computer.
- $\circ~$ E. Wolfram hypothesized that all class 2 CAs are universal computers.

Question 10

Consider one-dimensional cellular automata in which each cell is either black or white, and each cell's neighborhood consists of itsetwo nearest neighbors on either side (i.e., the neighborhood size is 5):

How many possible cellular automaton rules of this type are there?

- 。 A. 32
- 。 B. 128
- 。 C. 2¹²⁸
- 。 D. 2³²
- 。 E. 256²

Question 11

One difference between elementary cellular automata and the logistic map is:

- A. The logistic map is deterministic and elementary CAs are not.
- $\circ~$ B. The logistic map has fixed points, and elementary CAs do not.
- C. The logistic map has continuous state and elementary CAs have discrete states.
- $\circ~$ D. Elementary CAs iterate in discrete time steps and the logistic map does not.