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1. Introduction

What does it mean to be alive?  How would you define life? These questions are central to the 
study of complexity and complex adaptive systems (CAS).  Life possibly represents the most 
complex phenomena in the universe and as such is difficult to define, let alone develop a unified 
set of theoretical principles for. Many branches of complexity science such as: reproducing cellu-
lar automata, genetic algorithms and random boolean networks, to name a few, explore aspects 
of biological life. Recent developments in genetic science has shed light on the dark matter of the 
human genome (previously thought of as ‘junk’ DNA) as actually containing millions of 
‘switches’ which interact with the parts of  DNA which encode genes. It  seems our genetic mate-
rial is orders of magnitude more complex than once thought — a true combinatorial explosion. 
The sheer complexity of biological life makes for scant principles or theories that can apply 
across the board to all biological phenomena. The theory of evolution is a notable exception. An-
other possible candidate is biological scaling.

Biological scaling or allometry, is the relationship between the sizes and/or rates of organisms. 
The correlation between body size and metabolic rate across a range of taxonomies is a major 
focus of allometry.  The standard equation relating mass to metabolism is given in the following 
power law, where power law1 simply means that variable B equals the variable M when M is 
raised to some power a.

E x p l o r i n g  C o m p l e x i t y

1 1 Power law relationships are often observed in nature as: self-organized criticality, i.e. earthquakes and avalanches. 
For more on power laws see the ‘Zipfs Law and Power Laws” section.



B = Y0Ma

where B is metabolism, Y0 is a normalization constant, M is mass and a is the scaling exponent 
typically measured to be very close to 3/4.

Mass scales with metabolism to a 3/4 power law between organisms across much, if not all, of 
the biological domain.2  First observed by Kleiber in the 1930’s, the 3/4 power law applies to or-
ganisms across an incredible range of life processes, from the smallest unicellular organisms to  
shrews and hummingbirds to elephants and the largest living things (Fig. 1.1). “The life process 
covers more than 27 orders of magnitude in mass—from molecules of the genetic code and 
metabolic machinery to whales and sequoias...” (West, Brown 2004).

FIG. 1.1.  Body size versus metabolic rate for a variety of species.  Kleiber 
(1947). Kleiberʼs original units were weight and calories. Today units of 
mass and watts are typical.

Kleibers Law is interesting because it is unexpected. It was  initially thought the relationship of 
an organism’s size to its metabolism would be the same as volume to surface area or 2/3, the re-
lation of the square of the radius of a sphere to the cube of the radius of a sphere. “Max Rubner 
reasoned that nature had figured out that in order to safely radiate the heat we generate, our 
metabolic rate should scale with body mass in the same way as surface area. Namely, he pro-
posed that metabolic rate scales with body mass to the two-thirds power. This was called the 
‘surface hypothesis’...”(Mitchell 2009). Surface area was important in radiating heat and there-
fore related to metabolism. Because volume scales up much faster than surface area, it was as-
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2 The 3/4 power law is one of many power laws in biology that have exponents in multiples of 1/4,  called 1/4 power laws.



sumed metabolism would slow down following a 2/3 power law to keep organisms from over-
heating. Kleiber however, and many others since, have analyzed large quantities of data and de-
termined the power law to be closer to 3/4 suggesting that larger organisms have a faster and 
hence more efficient metabolism than previously thought. Yet, until the mid 1990‘s, there was no 
theoretical basis to explain why3.  Geoffrey West, Jim Brown and Brian Enquist have jointly 
studied Kleiber’s law and have developed a theoretical model which describes the constraints 
underlying the phenomena. The West, Brown Enquist model (WBE), offers a comprehensive and  
inter-theoretic synthesis from multiple perspectives — West is a physicist, Brown and Enquist 
biologists — that elegantly describes the quarter power law behavior in terms of fractal distribu-
tion and uptake mechanisms. ‘Brown and Enquist suspected that the answer lay somewhere in 
the structure of the systems in organisms that transport nutrients to cells. Blood constantly circu-
lates in blood vessels, which form a branching network that carries nutrient chemicals to all cells 
in the body...Brown and Enquist believed that it is the universality of such branching structures 
in animals that give rise to the quarter-power laws’ (Mitchell 2009).

WBE shows that metabolic efficiency increases (over that predicted by a 2/3 power) with higher 
level branching networks assuming the terminals of the network remain fixed or invariant. A 
vascular system, for instance, can distribute more resources to capillaries (terminal units) as the 
levels of a network increase than a volume to area model. In this sense, biological processes are 
more efficient the larger they become. Imagine for a moment the vascular systems of a shrew 
next to that of an elephant. Now imagine the elephant shrinking until it becomes the size of a 
shrew. There are many more capillaries in the elephant’s system than in the shrew’s. This means 
that the elephants metabolism scales up more than expected and partially explains why larger 
creatures: live longer, have longer gestation rates and sleep less than smaller ones. “An intriguing 
consequence of these “quarter-power” scaling laws is the emergence of invariant quantities, 
which physicists recognize as usually reflecting fundamental underlying constraints. For exam-
ple, the mammalian life span increases as approximately M ^ 3/4, whereas heart rate decreases as 
M ^ -1/4, so the number of heartbeats per lifetime is approximately invariant (about 1.5 X 10 ^ 9. 
independent of size” (West, Brown 2004). The WBE model defines a number of constraints or 
assumptions for a biological network. These are:

1. The distribution network determines the scaling relationship. “The relationship between 
metabolic rate and body mass is dominated by the structure and dynamics of the resource dis-
tribution network, which for most animals is the cardiovascular system” (Savage Deeds 2008). 

E x p l o r i n g  C o m p l e x i t y!
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3 The 3/4 power law is one of many quarter power laws observed in nature that are commonly referred to as quarter 
power scaling laws.



Metabolism4 B equates with the volume of blood5 Vblood in a given network. Mass M scales 
linearly with the number of terminal units (capillaries, leaves, etc.) in a given network.

2. The distribution network is hierarchical. “To say that the cardiovascular system is hierar-
chical amounts to assuming that there is a consistent scheme for labeling different levels of 
vasculature (Figure 1), proceeding from the heart (level 0) to the capillaries (level N). This as-
sumption is not exactly true. For example, the number of levels from the heart to the capillar-
ies in the coronary artery is smaller than the number of levels from the heart to the capillaries 
in the foot” (Savage Deed 2008).

3. Vessels within the same level of the hierarchy are equivalent. “All the vessels at the same 
level of the network hierarchy have the same radius, length, and flow rate. Again, this assump-
tion is not strictly true but provides a tractable way to study an averaged network” (Savage 
Deed 2008).

4. The branching ratio is constant. At every level k the number of branches increases by the 
branching ratio n.

5. The network is space filling. WBE uses averaged networks which are cross sectional area 
preserving and space-filling, meaning they distribute to all service areas6 in an organism. 

6. The energy loss of fluid flow through the network is minimized. Network efficiency in 
terms of resources distribution and energy use has been selected for through the evolutionary 
processes of any particular organism.

7. Capillary characteristics are the same across species. The terminal units of all members of 
a given taxonomy are the same size, i.e. capillaries are invariant within a taxon. A related con-
cept is that individual cells are the same size in different organisms.

8. Capillaries are the only exchange surfaces and thus directly relate blood flow rate to oxy-
gen supply in tissues. 

E x p l o r i n g  C o m p l e x i t y!

4

4 Metabolism here is generalized as the basal metabolic rate (MR) which is the MR of an organism at rest.

5 Using overall blood volume as a measure for metabolic efficiency is problematic when applied to organisms without 
blood, namely unicellular organisms.

6 A service area is the area around a given capillary that is given nutrients by the capillary.



Assumption 5 above refers to the cross sec-
tional area of a given branch of the network. 
The sum of all the cross sectional areas of the 
branches in a given level will be equal to the 
cross sectional area of the parent branch for 
that level. For instance, if a tree is made from 
many small pipes that each service one leaf, the 
trunk will be the collection of all the pipes, e.g. 
the sum of their areas. It is readily evident that 
this pipe model is independent of branch 
length. Area preserving branching networks 
were first recognized by Da Vinci ~500 years 
ago (see figure 1.3). The ratio of the radii of 
daughter branches to the radius of the parent 
branch is: rk + 1/ rk = n —1/2 where n is the 
branching ratio (2 for bifurcating) and k is a 

given level. This ratio is referred to as β (see Fig 1.4). In the related Netlogo models for this 
writeup this equation is re-written as:  rk + 1 =  rk / n 1/2. 

Assumption 5 also refers to the service-volume 
of a characteristic length of the network l  ^ 3.  
The sum of the volumes for the characteristic 
lengths in a given level will be equal to the 
characteristic volume for the parent branch. 
The ratio for the sum of volumes for daughter 
branches to the volume for the parent branch is 
l k + 1 / l k = n —1/3 . Where n is the branching ra-
tio and k is a given level. This ratio is referred 
to as λ. It is perhaps more clear to visualize a 
cube splitting into two cubes which together 
equal the volume of the initial cube (see Fig 
1.5). In the related Netlogo models for this 

writeup, this equation is re-written as:   l  k + 1 =  l  k / n 1/3.

FIG. 1.3. Da Vinci sketch showing area preserving branches 
in a bifurcating fractal structure.

FIG. 1.4. Area preserving relationship for bifurcating struc-
ture, (n = 2). 
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FIG. 1.5.  Volume preserving relationship for bifurcating 
structure (n = 2) with characteristic length of the network l.

The basic WBE model is simply the log (any log, i.e. natural log etc.) of the total number of cap-
illaries N in a given network over the log of the product of λ and β 2 (see appendix for a more 
detailed derivation of the WBE model).

a =  - ln N / ln λ(β 2) 

Solving for a we get

a = - ln N / ln N —1/3 * ( N —1/2 ) 2

a = - ln N / - 4/3 ln N
a = 3/4 ln N / ln N     
a = 3/4

The WBE model uses an averaged fractal branching structure  where an initial branch in a given 
network such as an aorta or trunk splits into successively smaller branches scaled to the ratios λ 
and β and terminating at a capillary or leaf. This structure is self similar and recursive for a given 
number of branching levels k. The diagram below (Fig 1.6) shows a network of 3 levels with a 
branching ratio of 2. 

E x p l o r i n g  C o m p l e x i t y!
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FIG. 1.6.  Hierarchical branching structure in an averaged network. Level K 
branches into two daughter vessels at level k + 1. The branching ratio = n = 2. rk = 
radius and lk = length of branch (Savage Deeds 2008).

The WBE model has been applied to many areas of biology and is generally called metabolic 
scaling theory or simply metabolic theory. Like many inter-theoretic theories, metabolic theory is 
elegant in its simplicity. By positing fractals as the prime constraints in biology, life — in all its 
variety and complexity — has a universal organizing principle which may be rigorously explored 
with the tools of science. In the words of West, Brown and Enquist, “We see the prospects for the 
emergence of a general theory of metabolism that will play a role in biology similar to the theory 
of genetics” (West, Brown Enquist 2005).

2. Biological Scaling with Fractal Geometry

Quick Overview

Biological scaling with fractal geometry (simple-bio-scaling.nlogo) is a model that illustrates 
how Kleiber’s law is represented by biological fractal networks viz. the WBE model. Prerequi-
sites for this section are a firm foundation in basic algebra, trigonometry, logarithms and sum-
ming a geometric series. Fractals networks are clearly visualized 3 dimensionally with multiple 
levels and branching patterns. A scatter plot and linear regression show the power law of 3/4 as-
sociated with Klieber’s law using the WBE model as well as other models. Fractal geometry ap-
plied to biological phenomena offers a unique way of understanding the complexity of biological 
forms and their functions.

Learning Targets

E x p l o r i n g  C o m p l e x i t y!
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1.  To familiarize an undergraduate or graduate student with basic principles relating to allomet-
ric biological scaling and complexity theory. Students should have a basic understanding of rules 
of exponents and logarithms.

2.  To familiarize an undergraduate or graduate student with Klieber’s law and the West, Brown, 
Enquist model which derives the well known 3/4 power law between body mass and metabo-
lism.

3. To illustrate the WBE model in a visual format that explains the assumptions of the model in 
tangible geometric terms. In short, a visualization of: 3/4 = - ln N / ln λ(β 2) 

Background

Scaling relationships in nature do not simply increase or decrease in size isometrically, e.g. a dis-
tance preserving mapping, but rather allometrically which is to say they vary depending on how 
large or small an organism is. The femur bone of a mammal, for instance, increases in cross sec-
tion in 2 dimensions as the body size increases in 3 dimensions, meaning that it must now sup-
port 3X the weight but is only 2X as large. Consequently, a mastodon’s femur is proportioned 
differently than a mouses’ and is thicker in cross section than a mouses’ would be if the mouse 
were scaled up to be the same size as a mastodon (see Fig 2.1). 

Allometry is the study of how the shape and proportions of 
an organism change with size throughout its ontogeny and in 
comparison to other organisms. Kleiber’s law, shows a linear 
relationship across many different classes of organisms be-
tween body mass and basal metabolism. By ‘linear’ it is 
meant that data scatter plotted on a log-log graph with body 
mass on the x-axis and metabolism on the y-axis will reveal 
a straight line with a slope of 3/4 after a linear regression is 
performed. This correlation across much of the organic 
world is striking and the subject of heated current debate 
(Agutter, Wheatley 2004). West, Brown and Enquist (WBE) 
have developed a theory that explains this linear correlation 

by introducing the inherent efficiency of fractal geometry in nature. Fractal geometry can be ob-
served in all creatures great and small, according to this theory, and is the basis for allometric 
scaling relationships in everything from unicellular organisms to great blue whales and even en-
tire forests. The gist of the idea is that fractals found in nature have properties, less friction and 
impedance for instance, and because of this inherent utility have been selected for over the eons 

FIG. 2.1.  Femur bone of a mastodon (top) 
compared to that of a mouse (bottom).

E x p l o r i n g  C o m p l e x i t y!
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by evolutionary processes. This idea certainly makes sense when observing distributive networks 
involving fluids such as vasculature. It is a little more obscure when applied to microscopic or-
ganisms that do not have obvious fractaline distributive networks in their systems. For this rea-
son, the models in this series focus on vasculature fractal networks where the main branch is 
analogous to the trunk of a tree or the the aorta in a mammalian arterial system and the subse-
quent branches are literally branches or arteries ending in leaves or capillaries. As previously 
mentioned, leaves and capillaries are considered scale invariant terminal units across a given 
taxon. For instance, the capillaries of an elephant and a mouse are the same size. An explanation 
for this is that chemicals in the blood, e.g. hemoglobin and oxygen represent a constraint that 
fixes the size of arterioles. The network, in a sense, builds backwards from there. Organisms of 
different sizes have different numbers of levels in their networks but otherwise are the same. 
Also, the WBE model assumes these fractal networks are cross-sectional area preserving and 
space filling with branching ratio or 2, i.e. a bifurcating fractal structure (see section 1). With 
these basic constraints it is possible to build a model which demonstrates Kleibers law in terms 
of fractal geometry alone. This has caused quite a stir in biology as well as physics and has not 
been without controversy as will be discussed more in the conclusion to this series. However, 
regardless of criticism of the WBE model, it is significant in being the first macro-biological the-
ory to link fractal distribution networks with metabolic scaling theory.

Netlogo Model Interface

Please open the model, simple-bio-scaling.nlogo. In the upper left hand corner of the interface, 
press the buttons in this sequence Clearall —> Setup —> Go. A fractal network should begin 
building in the 3D view of the interface. Explore the various buttons, sliders and switches to get 
a general idea of how the model works. 

The network is made form cylinders or vessels colored white which begin at a certain diameter 
and length controlled in the interface and branch into successively smaller and smaller tubes until 
the terminal size of .1 is reached, at which point a capillary is sprouted consisting of a red sphere 
with arbitrary dimension. An initial diameter is set by the init-dia slider which controls the di-
ameter of the first tube. The init-dia slider is located just below the ‘go’ button (Fig2.2). Remem-
ber that one of the assumptions of the model is that the terminal units (capillaries) are the same 
size over any number of levels k, so in a sense then, the sizes of vessels are determined back-
wards.  Size in this model is considered the diameter of the tube. Because the area preserving re-
lationship is a simple ratio: β = n ^ -1/2, it applies equally as well to diameter as it does to radius. 
The slider init-dia sets the initial diameter for any given level based on successive scalings of the 
terminus to the ratio β. The terminus is sized to be .1000, therefore, initial tube diameters for 
successively higher levels are .1000, .1414, .2000, .2828 etc. 

E x p l o r i n g  C o m p l e x i t y!
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The init-length slider controls the initial length of the first vessel of the network also referred to 
as the trunk. Length is a ratio based on service-volume preserving attributes for the entire net-
work. This does not refer to the volume of the tubes but rather to a volume of a space around the 
vessels which can be thought of as a service volume. 

FIG. 2.2  Biological scaling model with fractal networks of different levels k with a 
linear regression of .75.

CODE:  Click on the Code tab in the upper part of the screen and take a look at the various pro-
cedures used in the program. The procedures are named, aptly enough, after the process of grow-
ing a tree. After pressing setup, the make-tree button initiates the following series of procedures: 
seed —> trunk—> branch—> bud. The structure cascades into ever smaller branches until they 
reach the invariant terminal size, at which point buds are formed and the program stops. The sys-
tem is also analogous to a circulatory system, i.e. aorta, arteries/vessels, capillaries, and this 
terminology is found in the literature as well. After building a tree a data point will be added to 
the plot labeled scaling ratio. This point is determined by the metabolism B to mass M ratio7 as 
given by the WBE model. 

E x p l o r i n g  C o m p l e x i t y!
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Try building a few more trees with different initial diameters to plot some more points in the 
graph. To do this you need to first choose a new diameter in the chooser init-dia and then press 
setup to erase the old tree and seed for the new diameter and then maketree. Do not press clearall 
or else you will clear all the data points from the graph. After plotting a few more points, try 
pressing linear-regression to plot a best fit line for your scatter plot8. As you hopefully see, the 
points lie on a straight line with a slope of 3/4. This is the 3/4 power law we are familiar with.

THINGS TO NOTICE: It is possible to build a tree with a branching ratio of three instead of two 
by turning off the switch bifurcate and turning on trifurcate. You may notice that the linear re-
gression has the same slope = 3/4. How could this be possible? A different structure should have 
a different overall volume and node count. If you look at the values for the variables nodes N and 
volume of blood V-blood  you may see that indeed these values are different for different struc-
tures with the same number of levels k. The reason for this discrepancy is that the WBE model 
has basic assumptions built into it, one of which is that the network has a branching ratio of 2. 
When we switched the ratio to 3 we did not change the assumptions built into the model (this 
could be done but it would involve a lot of math) and therefore the power law is still 3/4. It is 
important to realize that the WBE model is a generic one using an averaged network with very 
tight constraints. Try switching off trifurcate and turn on bifurcate once again and make a tree. 
This is the averaged network WBE is based on and the main pedagogical objective of this net-
logo model. It turns out that all you need to know to determine the 3/4 power law for the WBE 
model is the number of nodes in the network! This is true because the network is built into the 
mathematics. Try  subbing in some values for N into the equation :

a = - ln N / ln λ(β 2) 
a = - ln N / ln N -1/3(N -1/2 )2

a = - 1 * ln N / ln N -1/3(N -1)
a = - 1 * ln N / ln N -4/3

a = - 1 * -3/4 (ln N / ln N)
a = - 1 * -3/4 (1) for 1 < N < ∞
a  =  3/4

This may feel somewhat anticlimactic but bear in mind the actual model goes into much more 
detail involving the fluid dynamics of organic networks and impedance at branching intercepts. 
Van Savage et. al. in Sizing Up Allometric Scaling Theory analyzes the model in some of its 
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more complex dimensions including a more detailed discussion of the models assumptions.9 The 
value of the model may be deceptively simple. It rests on the distillation of the myriad of life’s 
complex networks into an ‘averaged’ network that identifies the salient aspects of these biologi-
cal systems, namely their utility function. The netlogo simulations presented here and in the next 
section allow for the generalized model to be taken back into the field so to speak and explored 
as heterogenous structures with the capacity to evolve towards an optimal state based on the 
WBE utility function. The utility function is the maximum of the number of terminal nodes or 
capillaries B (metabolism) per minimum network volume M (mass).

FOURTH DIMENSIONAL FRACTALS: It is possible to derive the 3/4 power law from the sim-

ple ratio of length cubed over length to the fourth power:  a = l 3 / l 4. A log-log plot of this rela-

tionship will be a straight line with the familiar slope of 3/4. The relationship between the third 
and fourth powers has led West and others to posit that biology has evolved fourth dimensional 
networks. These networks operate in three dimensions but have somehow harnessed another de-
gree of freedom within these spatial constraints. West et. al. write:

“Unlike the genetic code, which has evolved only once in the history of life, fractal-like distribution net-
works that confer an additional effective fourth dimension have originated many times. Examples include 
extensive surface areas of leaves, gills, lungs, guts, kidneys, chloroplasts, and mitochondria, the whole-
organism branching architectures of trees, sponges, hydrozoans, and crinoids, and the treelike networks 
of diverse respiratory and circulatory systems. It is not surprising, therefore, that even unicellular organ-
isms exhibit quarter-power scaling, including the 3/4-power scaling law for metabolic rate. Although liv-
ing things occupy a three-dimensional space, their internal physiology and anatomy operate as if they 
were four-dimensional.” (West et al 1999).

Exercises

1. The WBE model uses a simple mathematical algorithm to determine the 3/4 power law rela-
tion between mass and metabolism. The WBE model is labeled ‘a=ln N/ln λ(β ^ 2)’ in the scroll 
down chooser labeled algorithm. This model is programmed in NetLogo with the following 
code:

  if algorithm = "a=ln N/ln λ(β ^ 2)" 
 
  [let λ N ^ (-1 / 3)
  let β N ^ (-1 / 2)
  set metabolism   log( N )10
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  set mass -1 * log(( λ * (β ^ 2)))10]

The mass of the network M, is defined by the number of branches n and levels k  in the network 
which determine the overall volume of blood in the network which is assumed to scale linearly 
with body mass. Metabolism is simply the number of terminal nodes in the network.

M — mass (linearly proportional to volume of blood)
B —metabolism ( number of terminal units)

The equation a = ln N/ln λ(β ^ 2) yields a = 3/4 for any number of terminal nodes N > 1. This is 
because the model represents an ‘average’ network which makes certain simplifying assumptions 
, for instance, the angle between vessels is not included in the model. The main assumptions are: 
that the network is bifurcating and all the vessels at any given level k are the same (see the ap-
pendix for a detailed derivation of the above equation). Suffice it to say, the model is fairly ge-
neric. Can you devise a different model that also yields the 3/4 exponent. For the apt reader, per-
haps this involves other branching ratios and vessel lengths/sizes. Coming up with an actual 
model is not as important as outlining the parameters and variables you would include in your 
model. 

2. What do you treat endogenously? What is excluded? How might your model be verified in a 
biological organism?

3. A few other examples taken from the literature and of the authors own invention are given in 
the chooser algorithm. Can you implement your model in the Netlogo code and add it to the 
chooser?

3. Biological Scaling with Genetic Algorithms

Quick Overview

Biological scaling with fractal geometry using genetic algorithms 
(intermediate-bio-scaling-GA.nlogo) is a model that illustrates how 3/4 power law scaling in bi-
ology (Kleiber’s law) is represented by biological fractal networks which evolve by means of 
genetic algorithms. Prerequisites for this section is the Genetic Algorithm series as well as a firm 
foundation in basic algebra, trigonometry, logarithms and summing a geometric series. Fractal 
networks are randomly generated and selected for based on a utility function. The utility func-
tion is the maximum of the number of terminal nodes or capillaries B (metabolism) per mini-
mum network volume M (mass). Fitness = max B/M. Multiple networks are possible to evolve 
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which satisfy the WBE model. Network fractality is examined as a basis for biological scaling in 
nature.

Learning Targets

1.  To familiarize an undergraduate or graduate student with allometric simulations using genetic 
algorithms.

2.  To apply genetic algorithms to biological scaling models. Concepts such as fitness function/
utility function, cross-over, tournament selection, and mutation are explored within the context of 
biological fractal distribution networks.

Background

The WBE model posits that biological fractal networks such as vascular networks, circulation 
networks, veinous networks etc. are space-filling fractal structures selected for over millennia 
based on efficiency.  Space filling networks offer utility to an organism by allowing the efficient 
distribution and uptake of resources to an entire organism’s body mass. For instance, the pulmo-
nary system, with a fractal dimension approaching 3  (space filling) is highly specialized to allow 
for the maximum surface area to deliver oxygen to the blood 10, hence the proverbial, ‘if the sur-
face area of the lungs were spread out flat it would cover a tennis court’11. The size of the red 
blood cells (hemoglobin/oxygen solution) in turn determines the capillary terminus for the net-
work. Maximizing the number of terminals is another space filling characteristic of the circula-
tory system. Terminals are scale invariant across many life forms based on universal constraints 
such as cell size. The WBE model assumes a space filling network based on scale invariant ter-
minals and posits that larger organisms have more efficient metabolisms than expected because 
there are more levels k in their fractal space-filling networks. Larger branches have less resis-
tance, so a structure that maximizes the number of large branches and minimizes the number of 
short ones is inherently more efficient.

A related example in transportation infrastructure demonstrates the efficiency of larger cities. 
Imagine transportation infrastructure as a fractal space filling network. Larger cities employ the 
economy of scale with vehicular distribution networks consisting of hi-ways, boulevards and 
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street grids etc. Hi-ways are bifurcating fractal structures — no wonder they’re called ‘arteries‘ 
— with relatively low viscosity (traffic, traffic lights) compared to a neighborhood scale street 
grid. Hi-ways are like the trunks of trees branching in ever decreasing size to neighborhood street 
grids which allow for redundancy in their networks; whereas, hi-ways do not, i.e. there is only 
one way to get from point A to point B. This is reflected in the looped arteries within the terminal 
node of a tree — the leaf. An explanation for this is that leaves are subject to damage — tears, 
insect invasion etc. — and therefore incorporate redundancy making them more resilient. Organs 
like the heart and brain are also more redundant networks for perhaps similar reasons — resil-
iency to heart attacks and strokes.

It may be difficult to wrap your head around the idea that 
biological networks could be area preserving and volume 
preserving simultaneously. The key is to realize that the area 
preserving part refers to the cross sectional area of the indi-
vidual vessels always equalling the sum areas of their daugh-
ters. Volume preserving refers to the service volume of the 
capillary which is assumed to be scaled linearly across all the 
levels. A simple diagram (Fig 3.1), offers a visualization of 
service volumes scaling through the levels of a network. 
Imagine spheres with diameters equal to the lengths of 
branches who’s volume is equal to the sum of the volumes of 
the daughter branches. This is the sense of volume preserving 
in WBE which is used synonymously with space filling. It is 
important not to confuse this service volume with the vessel’s 

volume which plays an important role in the WBE model. The vessels volume, by the way, is 
simply the volume of a cylinder whose area is the cross sectional area of the branch times its 
length. The WBE model is vessel volumes reducing as the lengths of vessels reduce as they pro-
gress from trunk to terminus. Vessel volume preserving coupled with cross sectional area pre-
serving would require daughter branches to be the same length as parent branches for a bifurcat-
ing tree.12

FIG. 3.1. Space filling fractal network 
showing both area preserving and volume 
preserving characteristics..
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12 A bifurcating network that is cross sectional area preserving and vessel volume preserving has daughter branches 
equal to the lengths of the parent. Say the radius and length of the parent cylinder are both 1, the volume is area * 
length so the volume is 3.14. The radii of the daughters would be .707 (Beta = -1/2) and their areas =  1.57  so the 
daughter’s lengths would have to be 1 to have their combined volumes = 3.14.



A network such as this is analogous to arteries and service volumes in a circulatory system13.  All 
the organism must be provided for, so the sum of the service-volumes equals the total volume of 
the organism, and given the density, which is assumed to be constant across individuals and spe-
cies, it is straightforward to convert this into body mass. Service volumes in actuality are packed 
together so may look more like polyhedra — imagine soap bubbles packing. The number of cap-
illaries in an organism is assumed to be proportional to metabolism. Once again bear in mind, 
WBE posits an averaged network which applies across the board to virtually all of life and by 
necessity is highly abstract and serves more as a basis for assumptions in the model than a strict 
description of how networks are specifically structured or space filling volumes physically pack 
in an organism. Indeed there are many different types of fractal structures that have evolved in 
biology. The next model in the series, intermediate-bio-scaling-ga.nlogo3d, investigates space 
filling characteristics further using genetic algorithms.

Netlogo Model Interface
Biological Scaling with Genetic Algorithms

Please open the model, intermediate-bio-scaling-ga.nlogo3d. In the upper left hand corner of the 
interface, press the buttons in this sequence Clearall —> Setup —>defaults—> multiple runs. A 
series of dynamic networks should begin building in the 3D view of the interface. Explore the 
various buttons, sliders and switches to get a general idea of how the model works. The network 
is designed to have a maximum of 3 levels. The defaults should produce a model similar to the 
one below (Fig.3.1). The three levels have distinct lengths that scale non-linearly. Do a number 
of runs and observe the lengths change in the upper left plot labeled Length of Branches. The 
level 1 branch length is usually, but not always, longer than the level 2 branch length. Sensitivity 
to initial conditions is evident early on as lengths quickly become locked in to a fractal-like hier-
archy. The trunk is typically the shortest branch as its length does not affect the space filling 
characteristics of the network. Indeed, if the mutation rate and strength is turned up the trunk 
may decrease to zero.
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13 Another useful analogy is the ductwork in a building’s HVAC system. Imagine two heating registers at the ends of 
daughter ducts which combine to form a larger branch. The combined volume of the space heated by each register is 
equal to the volume of the space that could be heated by the parent duct.



FIG. 3.1  Evolving biological network simulation..

This model is designed to select t he networks from an initial population with the highest utility 
functions. The utility function is simply the maximum number of terminal nodes, called nodes N, 
to the minimum volume of the network, termed network-size. For this model, the network size is 
considered the sum of the volumes of the vessels, (cross sectional area times the length of the 
branch). This should not be confused with the volume of blood in WBE which refers to the serv-
ice volumes of the network (see appendix). 

Before getting into the specifics of how genetic algorithms are used in this model, it is helpful to 
get an intuitive understanding of the model by modifying the default settings and doing a few 
runs. You may notice in the plot Length of Branches that the lengths of the vessels get smaller 
over time. In the plot labeled Nodes and Volume of Blood, the node count increases as the vol-
ume decreases. This corresponds to the increased fitness of the model over time shown in the 
plot Fitness.

Now that you have a basic feel for how the model is setup try exploring the procedure create-
next-generation. A genetic algorithm is a way of practically selecting desirable outcomes over a 
large search space. The method for doing this replicates the process of natural selection. As such, 
the primary elements of a GA are inheritance, mutation, selection and crossover. The particular 
GA used here is called tournament selection, where the best fitness solution is chosen from a 
population by choosing the best fitness from a random selection of three with replacement. This 
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is repeated until a new generation is formed and the old generation is dismissed. Heritable traits 
in this model are binary strings of length determined by the slider genome-length. These strings 
are referred to as DNA in the model and define the length of the vessels as well as the angles of 
branches and the branching ratio. These heritable variables are modified through crossover, clon-
ing and/or mutation and passed along from one generation to the next. Crossover involves two 
parents combining their DNA with a random split point and swapping of the subsequent sub-
strings. Cloning is simply taking the best fit from one sample and giving it to the offspring. All of 
the old population who are not ‘mated’ in the crossover procedure are cloned. Mutation is a ran-
dom modification of the DNA strings, replacing a varying number of randomly selected bits with 
either a one or zero. Mutation in this model has two settings: a mutation-rate and mutation 
strength. Mutation rate is simply the number of the new population (both crossovers and clones) 
who are subjected to mutation. Mutation-strength is the number of times the process of randomly 
changing bits occurs, a higher mutation strength randomly alters the string more. The reporter 
procedure below is choosing a random item from the overall string length and replacing it in the 
string with a binary, either a one or zero.

to-report mutate [string bits]  
[report replace-item random length string string bits
]
end

Now that you are somewhat familiar with the basics of the model, try increasing the init-dia 
slider to .4000 and run the model with the defaults or with your own modifications to the pa-
rameters. To speed up the model, turn the show-nodes? and wait? switches off at the bottom left 
hand corner of the interface (Fig 3.2) and uncheck the view updates box in the 3D view (Fig 3.3). 
The model is composed in three parts separated in the code as make seeds, make tree and make 
next generation. These categories of procedures are basically: defining a seed population with 
genetic information (the DNA strings), growing the seeds into trees with certain attribute (size 
and number of nodes) and selecting for those with the best fitness (nodes - size) to create a new 
generation of seeds and begin the process again. Each seed has genetic material defined as bit 
strings which set variables such as branch lengths and branch angles. A range of seeds, trees and 
selection processes can be controlled with built in parameters in the model. The following is a 
list of each control on the left-hand portion of the interface and a brief description of what they 
do.

Init. Dia: Sets the initial diameter of the first branch which is referred to as the trunk in the 
model.
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Genome-length: Defines the length of the bit string for each seed variable. The ones and zeros in 
each string are added together to set the value for a particular variable. For instance say the string 
[001101] is the length-0 variable. This means the first branch (trunk) will be 3 increments long.
Population-size: Defines the number of seeds used in the model. This number never changes as 
the old generation makes exactly the same number of offspring and then dies with no overlap.
Crossover-rate: This is the percentage of the number of individuals in the old population used 
for crossover (mating) to create the new generation. The percentage of the population remaining 
are cloned.
Mutation-rate: This is the percentage of the population which mutate.
Mutation-strength: Defines the number of times a string is subjected to mutation.
Service-volume: Defines the number of nodes at any given terminus. Terminals are the ends of 
the last level of branches which consist of capillaries and nodes14

FITNESS FUNCTION: The way the genetic algorithm selects genes to propagate is by choosing 
seeds with the highest fitness function (FF) which is a simple scaler value. There are multiple FF 
for that can be selected. Go to the code section of the model and scroll down the procedures tab 
to calculate-fitness. It should look like this:  

to calculate-fitness
   if fitness-function  = "service volume - network size" [
  ask seeds [
set fitness  service-volume - (network-size') ]
   ]
  
   if fitness-function  = "service volume - capillaries" [ 
  ask seeds [
set fitness  service-volume - N ]
   ]
end

The simulation is designed to select for the maximum number of nodes and the minimum net-
work size or number of capillaries. Higher node counts with smaller networks will have the 
highest FF. Networks can evolve to have bifurcating or trifurcating branching structures. Branch-
ing structures together with the setting for service-volume creates an initial number of nodes 
around a given capillary but nodes die if they overlap, so the branching angle and lengths of 
branches also come into play to define FF. The variable service-volume refers to the number of 
nodes. The variable network-size refers to the sum of the volumes of the vessels in the network. 
The variable capillaries refers to the number of terminals which is the same as the number of 
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14 Each terminal has only one capillary but several nodes which define the service volume for the network. Nodes are 
analogous to biological cells receiving nourishment and distributing waste into the arterial and veinous networks 
supporting them.



branches at the last level, i.e. the network depicted in figure 1.6 would have 4 capillaries. All of 
these variables are different for different seeds so the FF values are unique and thereby selecta-
ble. 

FIG. 3.2  Model interface at about 60 ticks.
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FIG. 3.3  Model interface at 290 ticks.

FIG. 3.4  Lengths of branches at 3 
levels with different sized service vol-
umes.

The screen shots above (Fig 3.2, 3.3, 3.4) show the progression of branch lengths over a couple 
of intervals. A distinct tripartite division is clear and dependent on service volume size. Branches 
settle on a local optimum temporarily but may suddenly shift as mutant variations become avail-
able and are selected for. This simulation attempts to evolve a fractal network based on a few 
simple assumptions and rules. The degree to which it is successful is multi-faceted. The trunk 
consistently shrinks which is expected as it doesn’t change the space filling characteristics of the 
overall structure. Intermediary branches oscillate relative to one another, meaning that if one de-
creases in size another increases and vice versa.
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THINGS TO NOTICE: Try sliding the mutation rate down to zero and the crossover rate to 
around 50 and do a few runs. Notice that the population does evolve for a while with only cross 
over and cloning at play but eventually reaches a local maximum and flatlines. Mutation must be 
introduced to create variety in the genome and a chance for new forms to evolve. Using only a 
two level network is a simple way to see this interaction at work. The smallest volume network 
has the shortest branches yet the limit as branch length approaches zero is asymptotic, this is be-
cause the probability of mutating the necessary bits (a one to a zero) becomes less and less as 
there are fewer and fewer ones to randomly select. After all, the overall state space is a power 
law itself, equal to bitsstring-length, 2x. A string of length 30, for instance, has a state space of over a 
billion. As the string length increases, the state space grows exponentially. So, as our branch 
length becomes smaller it gets increasingly improbable that it will become smaller yet.

EXTENDING THE MODEL: An interesting extension of the model, given in the exercises sec-
tion, is to allow the mutation-strength to vary over time and be an additional variable selected 
for. When mutation decreases over time a system is said to simulate the process of annealing an 
analogy to metallurgy where the temperature of a metal changes its properties and by careful 
management of heating and cooling, properties can manifest in metals such as softness or hard-
ness etc. Mutation-strength can be thought of as temperature and varying this variable, a simula-
tion of annealing. However, this model only allows for fixed values of mutation strength. An ex-
tension of the model would be to add variable constraints for mutation strength. These con-
straints could be environmental ones which affect the genome, i.e. temperature.

RELEVANCE TO WBE: The second fitness function in the simulation is most like WBE in that 
the service volume represents the total volume of blood which translates to mass M and the capil-
laries represent metabolism B. However, the service volumes in this simulation are created at the 
final level of the network. In WBE, the service volumes scale with each branching level and are 
space filling. The WBE network may be thought of as service volume preserving in addition to 
area preserving. The simulation also uses trifurcating structures which are not in the WBE model 
which posits that there is more impedance at trifurcations, slowing down  blood flow and not se-
lected for in biological evolution.  

CRITICISMS OF WBE: In WBE, abstractions of real networks, such as vascular networks in 
human beings, are necessarily generalized to apply to many examples where definitions may be-
come more ambiguous or serve as analogies rather than strict isomorphisms between the mathe-
matical model and real world networks. For instance, in a service volume preserving network 
such as WBE, it is not clear what constitutes the service volume being preserved (or network for 
that matter) for microbial organisms. Further ambiguity is introduced in referring to spatial net-
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works as fourth dimensional, what exactly constitutes the fourth dimension here?15. Analogy and 
description gets a little blurry in WBE and has fed criticism. For a good outline of the major 
critical camps concerning WBE, see ‘Complexity a Guided Tour’ (Mitchell  2009) and Metabolic 
scaling: Consensus or Controversy? (Agutter,Wheatley 2004).  Having said this however, ab-
stractions and generalizations are necessary in developing inter-theoretic models and it should be 
clear that the model is an ‘average’ of general characteristics and not homomorphic to any real 
network. After all, we commonly refer to the parabolic trajectory of a ball thrown in the air with 
the understanding that the parabola stops when the ball hits the ground yet mathematically the 
parabola goes on forever and somewhere the ball is falling still.

4. Conclusion
Allometric economies of scale observed between mass and metabolism over a broad range of 
biological organisms can begin to be understood and explained through consideration of the 
properties of their distribution and uptake mechanisms. These mechanisms are self-similar fractal 
trees which provide for the nourishment and other needs of cells within a service volume. The 
utility function for a general model of fractal networks is given in the West, Brown and Enquist 
model as the least volume of blood in the network (which scales with body mass) to the greatest 
number of terminal nodes. The number of terminal nodes only depends on the number of levels 
in a given network. Volume of blood is minimized in networks with cross sectional area preserv-
ing between adjacent level’s vessels and service volume preserving constraints represented in the 
terms λ and β. These networks are fractal space filling trees. This general notion is an attempt to 
explain the ubiquity of 1/4 power scaling laws observed so readily  in nature. A variety of fractal 
structures and evolutionary processes are presented here as 3D Netlogo models to allow students 
and researchers to investigate allometric principles and the WBE model in particular in a visually 
impact-full format. The usefulness of models and simulations is not necessarily to glean new in-
sight into any particular biological examples but to develop a thread of continuity across all of 
biology that sheds some light on essential organizing principles and the tremendous variety and 
complexity they achieve.

Exercises

1. Design a default setting that has better fitness than the existing defaults. It may be helpful to 
use behavior space and test a number of different settings for crossover-rate, mutation-rate and 
mutation-strength.
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15 Blum derives the 3/4 power law in 1977 based on a hyper sphere in the paper  ‘On the Geometry of Four-
dimensions and the Relationship Between Metabolism and Body Mass’ (Blum 1977). 



2. Extend the model by allowing for mutation strength to vary over time. Simulated annealing is 
associated with temperature. A temperature control could increase mutation strength with tem-
perature and allow it to gradually cool, giving the model more sensitivity when it is most needed. 
Larger mutations may help the model evolve quickly but smaller mutations are necessary later on 
to fine tune the model.

3. What phenotypic types might increase fitness? Introducing more stochastic processes into the 
make-tree procedure introduces heterogeneity in the models. Try extending the model to allow 
for environmental influence to interact with the growth process of the network. 

Just for fun

4 a. Trifurcated structures tend to evolve in this model because they have kbranching structure more 
capillaries than a bifurcated structure. This is not observed in biological systems so much. Try 
creating a weighted cost for trifurcating structures using a slider in the interface. Is it possible to 
eliminate the trifurcating structures? 

b. Seeds have the same branching ratios for all levels (and angles by the way). If you are feeling 
adventurous, create the possibility for different branching ratios and angles to occur at different 
levels (you will need to make a new DNA string for each added parameter). Is it possible to 
evolve a network with trifurcating branches on some levels and bifurcating branches on others by 
adjusting your weight gradient?

c. Invent your own variables to add to seeds’ selectable traits. These could be additional DNA 
strings or environmental factors such as mutation or even phenotypic perturbations in the make-
tree procedure. 
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M - mass (linearly proportional to volume of blood) Μ α Vblood

B - metabolism (linearly proportional to number of invariant terminal 
units) B α Vcap Ncap α Ncap  

n - branching ratio. For this model is bifurcating so is = 2
N - number of nodes at a given level k
rk - radius at a given level
lk - length at a given level
T - the terminal level in the network, this is the level with capillaries.
              T

Μ α Vblood = Σ Nk π rk2 lk  sum of the number of vessels’ volumes               
              k=0            
                                         π lk rk2  = volume of a single tube at level k  

              T
                = Σ nk π ( λ -(T-k) lN ) ( β-2(T-k)  rN2 )   ❉ number of vessels               k=0     
                                 n = 2 for bifurcating network

               = π rT2 lT Σ nk      λ -(T-k) β-2(T-k) 
                                    volume of a single capillary

               =  nT VT      Σ n-(T-k) λ -(T-k) β-2(T-k)

        NT = Ncap      VT = Vcap

               = nT Vcap   Σ   1 / (n λ β2)(T-k)    sum of geometric series*

               = Vcap  n(4T/3+1/3) - nT / n1/3 - 1

 lim as T -> ∞ = n4/3  all but leading term drop out

Μ α Vblood α Vcap n(4T/3) α Vcap (nT)4/3   for T -> ∞                                       

                                                                        Ncap

Μ α Vblood α Vcap  Ncap4/3  

Μ α Vblood  α B4/3  because [B=NTBT (invariant) α NT   ∴ B α Μ 
3/4
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T

Σ 1 / (n λ β2)(T-k)

k=0

let k’ = T - k
let x = (n λ β2)-1 

T

Σ   xk’  = (n(n1/3 n 1)-1 = n1/3
K’=0

xT+1 - 1 / x - 1  (geometric series)

nT+1 / 3 - 1 / n 1/3 - 1

❉ lk = ( lk / lk+1) ( lk+1 / lk+2)... ( lT-1 / lT) lT
            ( λ-1 )         ( λ-1 )...
                 ( T-k)
 

lk =  ( λ-(T-k) ) lT          

λ= ( lk+1 / lk) = n-1/3

 
rk =  ( β-(T-k) ) rT          

β = ( rk+1 / rk) = n-1/2
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