Introduction to Dynamical Systems and Chaos (2019)

5.7 Test » Unit 5 Test

Instructions 1

You may use any course materials, videos, websites, calculators, etc. for this test. Just don't ask another person for the answers or : answers with other people. Please do not post questions about the test on the forum. If you have questions, please send them via er chaosQcomplexityexplorer.org. Thanks.

Question 2

The bifurcation diagram for an iterated function (not the logistic equation) is shown in the figure above. Which statement best descri long-term behavior of orbits of this dynamical system if $r=1.0$?

- The orbit approaches zero
- The orbit approaches a fixed point near $x=1$.
- The orbit approaches a fixed point near $x=1.3$.
- The orbit is periodic with period 2
- The orbit appears to be aperiodic

Question 3

The bifurcation diagram for an iterated function (not the logistic equation) is shown in Question 1. Which statement best describes th behavior of orbits of this dynamical system if $r=1.5$?

- The orbit approaches zero
- The orbit approaches a fixed point near $x=1$.
- The orbit approaches a fixed point near $\mathrm{x}=1.3$
- The orbit is periodic with period two.
- The orbit appears to be aperiodic.

Question 4

The bifurcation diagram for an iterated function（not the logistic equation）is shown in Question 1．Which statement best describes th behavior of orbits of this dynamical system if $r=1.9$ ？
－The orbit approaches zero．
－The orbit approaches a fixed point at $\mathrm{x}=1$ ．
－The orbit approaches a fixed point near $x=1.3$ ．
－The orbit is periodic with period two．
－The orbit appears to be aperiodic．

Question 5

Answer this question by using the web program that makes bifurcation diagrams for the logistic equation．Near $r=3.740$ there is a k window．A bifurcation from period 5 to period 10 occurs near what r value？
－$r=3.738$
－$r=3.741$
－$r=3.743$
－$r=3.745$

Question 6

Answer this question by using the web program that makes bifurcation diagrams for the logistic equation．Near $r=3.702$ there is a k window of what period？
－ 3
－ 4
－ 5
－ 6
－ 7

Question 7

Answer this question by using the web program that makes bifurcation diagrams for the logistic equation．Near $r=3.582$ there is a k window of what period？
－ 4
－ 5
。 10
。 12
。 20

Question 8

Near a bifurcation, the bifurcation diagram often becomes "fuzzy" or blurry, as shown above. (This is a zoomed-in view of the transit period two to period four.) What is the cause of this blurring?

- The program is not plotting enough points.
- The attractor is very weakly attracting, so it takes the orbit a very long time to reach the attractor.
- Sensitive dependence on initial conditions.
- The shadowing lemma

Question 9

Near a bifurcation, the bifurcation diagram often becomes "fuzzy" or blurry, as shown above. (This is a zoomed-in view of the transit period two to period four.) To make the bifurcation diagram appear sharper, what should one do?

- Make the program plot more iterates
- Make the program skip more iterates before it starts plotting.

