Introduction to Complexity (Fall, 2014)
10.6 Take Unit 10 Test » Unit 10 Test

Instructions 1

You may use any course materials, websites, Netlogo models, calculators, etc. for this test. Just don't ask another person for the an share your answers with other people.

Question 2

Suppose you see the following graph (a log-log plot), where the slope of the line is equal to $1 / 2$.

What power law does this correspond to?

- A. $y=x$
- B. $y=x^{2}$
- C. $y=x^{1 / 2}$
- D. $y=(1 / 2) x$

Question 3

Suppose you see the following graph, which plots the function
$\log y=-2 \log x$

What power law does this correspond to?

- A. $y=-x$
- B. $y=x^{-2}$
-C. $y=-2 x$
- D. $y=x^{-1 / 2}$

Question 4

Consider the following log-log plot of earthquake magnitudes recorded worldwide.(from http://www.physics.buffalo.edu/phy410505/2011/topic1/app2/index.html):

Which of the following is true, given the data in the plot?

- A. There are about 2 times as many magnitude 4 earthquakes as magnitude 5 earthquakes
- B. There are about 10 times as many magnitude 4 earthquakes as magnitude 5 earthquakes
- C. There are about 100 times as many magnitude 4 earthquakes as magnitude 5 earthquakes

Question 5

The surface hypothesis states that metabolic rate is proportional to body mass raised to the $2 / 3$ power.
Assume that the following equation is true:

$$
\text { metabolic rate }=4^{*}(\text { body mass })^{2 / 3}
$$

where metabolic rate is measured in watts and body mass is measured in kilograms.
Given this equation, what is the approximate metabolic rate of a 60 kilogram person?
Hint: See the quiz in Unit 10.2 for instructions on how to use Google as a calculator for problems like this, or use the NetLogo mode PowerLawCalculator.nlogo, which is linked from the Course Materials page under "Unit 10".

- A. 11 watts
-B. 61 watts
- C. 90 watts
- D. 98 watts

Question 6

Now assume Kleiber's law is true, that is, metabolic rate is proportional to body mass raised to the $3 / 4$ power, and assume that the following equation is true:

$$
\text { metabolic rate }=4^{*}(\text { body mass })^{3 / 4}
$$

where metabolic rate is measured in watts and body mass is measured in kilograms.
Given this equation, what is the approximate metabolic rate of a 60 kilogram person?

- A. 44 watts
- B. 57 watts
-C. 86 watts
- D. 105 watts

Question 7

Another observed scaling law mentioned in the lectures is that resting heart rate is proportional to body mass raised to the $-1 / 4$ pow question, assume that:

```
heart rate =C * (body mass)-1/4,
```

where heart rate is measured in beats per minute, and body mass is measured in kilograms.

Using a calculator or PowerLawCalculator.nlogo (on the Course Materials Page), find the constant C such that a 60 kg human will hi heart rate approximately 70 beats per minute.

Hint: You can do this either via trial and error, or by solving an equation. In PowerLawCalculator.nlogo, set X to 60, alpha to -0.25 , ; experiment with different values of C.

- A. C is about 100
- B. C is about 200
-C. C is about 300

Question 8

Using the same value of C that you found for question 6 , find the predicted resting heart rate in beats per minute of a 7 kg dog.
(If you have a dog at home, measure the dog's heart rate to see if it is close to what the equation predicts!)

- A. About 123
- B. About 155
- C. About 203

